首页
登录
职称英语
Astronomy: The Auroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img] [br] Lis
Astronomy: The Auroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img] [br] Lis
游客
2025-02-08
34
管理
问题
Astronomy: The Auroras
[br] Listen again to part of the lecture.Then answer the question. What can be inferred about the auroras?
W: For centuries, people have told stories to explain the moving lights in the night sky—the curtains of greenish-white light with pink fringe. People described these lights as the breath of the Earth, powerful spirits, or angel light. An early twentiethcentury explorer wrote about the "bloody red" and "ghostly green" lights. These lights, of course, are the aurora borealis—the northern lights—and, in the south, the aurora australis. Most of the time they’re greenish-yellow, but sometimes they take colors from violet to red. The auroras can be seen at any time of the year, with the right atmospheric conditions. They’re most often seen near the North and South Poles, during times of maximum solar activity. The closer to the North or South Pole you are, the better you can see the lights.
The auroras occur in the ionosphere. The ionosphere is the layer of the upper atmosphere where high energy solar radiation strips electrons from oxygen and nitrogen atoms, and leaves them as positively charged ions. The auroras are the result of a complex interaction between the solar wind and the Earth’s magnetic field. Here’s what happens. The sun’s heat charges the particles in the solar wind, a stream of electrically charged subatomic particles that continually emanates from the sun. As the solar wind approaches Earth, it’s deflected by Earth’s magnetic field and diverted north and south toward the magnetic poles. The interaction between the solar wind and the magnetosphere generates beams of electrons. These electrons collide with atoms and molecules within the ionosphere near Earth’s magnetic poles. The collisions rip apart molecules and excite atoms. Thus, oxygen and nitrogen atoms in the ionosphere become "excited, "or ionized. The auroras happen when these ionized atoms return to their normal state from their excited, energized states. The ions combine with free electrons—as they do so, they emit radiation. Part of this radiation is visible light: the aurora borealis and aurora australis.
Yes, Simon?
M: Uh ... it sounds kind of like electricity.
W: Yes, that’s right. The auroras are an electrical phenomenon. As you know, an electrical generator has two components: a conductor and a magnetic field. To generate electricity, the conductor has to move across the field to produce a force. With the auroras, the conductor is the solar wind carrying a stream of charged particles.
M: So, what happens is, when, uh, when the charged particles reach Earth’s magnetic field, they, uh, move along in the field towards the north and south magnetic poles.
W: Exactly. And then the particles collide with gases in the atmosphere—oxygen and nitrogen—and the oxygen and nitrogen atoms get excited. And then, when the particles get de-excited and return to their normal state, they emit the auroras by releasing energy in the form of light. Oxygen releases either dark red or ghostly green. Nitrogen emits rosy pink or magenta. The activity of the auroras varies with the sun’s activity. When the sun is quiet, the auroras can be seen only in a small area. When the sun is active, however, the aurora borealis can be seen across southern Canada and the northern United States.
选项
A、The auroras change in size and shape during the night.
B、The color of auroras is related to the type of gas involved.
C、The beauty of auroras is difficult to measure accurately
D、The auroras are a possible source of nuclear energy.
答案
B
解析
Listen again to part of the lecture. Then answer the question.
"And then the particles collide with gases in the atmosphere—oxygen and nitrogen—and the oxygen and nitrogen atoms get excited. And then, when the particles get de-excited and return to their normal state, they emit the auroras by releasing energy in the form of light.
Oxygen releases either dark red or ghostly green. Nitrogen emits rosy pink or magenta."
What can be inferred about the auroras?
The professor says Oxygen releases either dark red or ghostly green. Nitrogen emits rosy pink or magenta. You can infer that the color of auroras is related to the type of gas involved. (2.4)
转载请注明原文地址:https://www.tihaiku.com/zcyy/3948324.html
相关试题推荐
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Whatphysicalfeat
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Selectthebirdth
Biology[img]2012q1/ct_etoefm_etoeflistz_0555_20121[/img][br]Selectthebirdth
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Basedonthe
Conversation[img]2012q1/ct_etoefm_etoeflistz_0549_20121[/img][br]Whydoesthe
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]Lis
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]The
Astronomy:TheAuroras[img]2012q1/ct_etoefm_etoeflistz_0535_20121[/img][br]Lis
Conversation:CampusNewspaper[img]2012q1/ct_etoefm_etoeflistz_0529_20121[/img]
Conversation:CampusNewspaper[img]2012q1/ct_etoefm_etoeflistz_0529_20121[/img]
随机试题
甲(15周岁)盗窃他人钱包被陈某发现后,为窝藏赃物而当场使用暴力,失手将陈某打死
汽车库内设有残疾人的停车位,为方便轮椅活动,下列有关要求,哪项是不正确的?(
某工程计划如图所示,活动A从3月1日开始,活动E最迟应该在3月()日开始。
按照养护目的和养护对象,养护工程可分为()。A.日常养护 B.专项养护 C.
诊断心病的常用腧穴是A.中府、肺俞、太渊 B.巨阙、膻中、大陵 C.期门、肝
输卵管妊娠最主要的病因是A、输卵管炎症 B、辅助生殖技术 C、输卵管手术史
下列关于个人投资者所处生命周期的不同阶段确定其应该选择的基金产品类型,说法不正确
根据《房屋登记办法》,房屋登记的种类包括( )。A:房屋所有权登记 B:房屋
课外活动的基本组织形式是()。 A.群众性活动B.竞赛活动 C.游
(2015年真题)项目施工过程中,应及时对“施工组织设计”进行修改或补充的情况有
最新回复
(
0
)