首页
登录
职称英语
Creating artificial gillsBackground Taking in oxygen; mammals — lungs; fish
Creating artificial gillsBackground Taking in oxygen; mammals — lungs; fish
游客
2025-02-10
39
管理
问题
Creating artificial gills
Background
Taking in oxygen; mammals — lungs; fish — gills
Long-held dreams — humans swimming underwater without oxygen tanks
Oxygen tanks considered too【L31】________and large
Attempts to extract oxygen directly from water
1960s — prediction that humans would have gills added by【L32】________
Ideas for artificial gills were inspired by research on
fish gills
fish swim bladders
animals without gills — especially bubbles used by【L33】________
Building a simple artificial gill
Make a watertight box of a material which lets【L34】________pass through
Fill with air and submerge in water
Important that the diver and the water keep【L35】________
The gill has to have a large【L36】________
Designers often use a network of small【L37】________on their gill
Main limitation — problems caused by increased【L38】________ in deeper water
Other applications
Supplying oxygen for use on【L39】________
Powering【L40】________cells for driving machinery underwater [br] 【L38】
In my talk today I’ll be exploring the idea of artificial gills. I’ll start by introducing the concept, giving some background and so forth and then I’ll go on to explain the technological applications, including a short, very simple, experiment I conducted.
Starting with the background... As everyone knows, all living creatures need oxygen to live. Mammals take in oxygen from the atmosphere by using their lungs, and fishes take oxygen from water by means of their gills, which of course in most fishes are located either side of their head.
But human beings have always dreamt of being able to swim underwater like the fishes, breathing without the help of oxygen tanks. I don’t know whether any of you have done any scuba diving but it’s a real pain having to use all that equipment. You need special training,
and it’s generally agreed that tanks are too heavy and big
to enable most people to move and work comfortably underwater. So scientists are trying a different tack: rather than humans carrying an oxygen supply as they go underwater, wouldn’t it possible to extract oxygen in situ, that is, directly from the water, whilst swimming?
In the nineteen sixties the famous underwater explorer Jacques Cousteau, for example,
predicted that one day surgery could be used to equip humans with gills.
He believed our lungs could be bypassed and we would learn to live underwater just as naturally as we live on land. But of course, most of us would prefer not to go to such extremes.
I’ve been looking at some fairly simple technologies developed to extract oxygen from water — ways to produce a simple, practical artificial gill enabling humans to live and breathe in water without harm. Now, how scientists and inventors went about this was to look at the way different animals handled this — fairly obviously they looked at the way fishes breathe but also how they move down and float up to the surface using inflatable sacs, called swim bladders.
Scientists also looked at animals without gills, which use bubbles of air underwater, notably beetles.
These insects contrive to stay underwater for long periods by breathing from this bubble which they hold under their wing cases.
By looking at these animal adaptations, inventors began to come up with their own ’artificial gills’. Now making a crude gill is actually rather easy — more straightforward than you would think. You take a watertight box,
which is made of a material which is permeable to gas, that is, it allows it to pass through,
inwards and outwards. You then fill this with air, fix it to the diver’s face and go down underwater.
But a crucial factor is that the diver has to keep the water moving,
so that water high in oxygen is always in contact with the gill, so he can’t really stay still.
And to maximise this contact it’s necessary for your gill to have a big surface area.
Different gill designers have addressed this problem in different ways,
but many choose to use a network or lattice-arrangement of tiny tubes as part of their artificial gills.
Then the diver is able to breathe in and out — oxygen from the water passes through the outer walls of the gill and carbon-dioxide is expelled. In a nut-shell, that’s how the artificial gill works.
So, having read about these simple gill mechanisms, I decided to create my own. I followed the procedure I’ve just described and it worked pretty well when I tried it out in the swimming pool... I lasted underwater for nearly forty minutes! However, I’ve read about other people breathing through their gill for several hours.
So the basic idea works well,
but the real limitation is that these simple gills don’t work as the diver descends to any great depth because the pressure builds
and a whole different set of problems are caused by that. Research is being done into how these problems might be overcome, but that’s another story which has to be the subject of another talk!
Despite this serious limitation, many people have high hopes for the artificial gill and they think it might have applications beyond simply enabling an individual to stay underwater for a length of time. For example,
the same technology might be used to provide oxygen for submarines,
enabling them to stay submerged for months on end without resorting to potentially dangerous technologies such as nuclear power.
Another idea is to use oxygen derived from the water as energy for fuel cells.
These could power machinery underwater, such as robotic devices...
So, in my view, this is an area of technology with great potential. Now, if anyone has any questions, I’d be happy to answer...
选项
答案
pressure
解析
局限在于这些简单的腮在潜水员沉入很深的地方时就不起作用了,因为压强增加了(pressure builds)。录音原文中的builds是指(压力、速度等)逐渐变大增强,对应题目中的increased。
转载请注明原文地址:https://www.tihaiku.com/zcyy/3950462.html
相关试题推荐
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish
Oxygenandnutrientsreachthebody’stissues______fromthebloodthroughthe
→Mammalsandbirdsgenerallymaintainbodytemperaturewithinanarrowrange
→Mammalsandbirdsgenerallymaintainbodytemperaturewithinanarrowrange
随机试题
衡量居住区公共服务设施配套建设水平的指标,包括()。A.人均公共绿地面积
根据《国家电网公司变电运维管理规定》,开关室长期运行温度不得超过40℃,否则应采
生态系统的能量流动过程包括四个方面,能量由植物转移到动物与微生物身上属于能量流动
下列关于城市道路系统与城市用地关系的表述,错误的是()。A.城市由小城市发展
内部招募可能存在的问题是()。A.直接招募成本较高 B.招募的人员有可能并不认
某公司有关A材料的相关资料如下: (1)A材料年需用量3600件,每日送货量为
钢筋进场检验的物理及力学性能检验包括( )。A.屈服强度 B.抗拉强度 C
勘察人在与发包人签订合同时提交了履约保函,关于该保函的说法正确的是( )。A.
七段数码显示译码电路应有多少个输出端?()A.8个 B.7个 C.16个
特种设备安全法确定的起重机械类特种设备,是指用于垂直升降或者( )重物的机电设
最新回复
(
0
)