首页
登录
职称英语
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS1 Until the ninetee
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS1 Until the ninetee
游客
2025-02-07
46
管理
问题
DEVELOPMENTS IN THE CONSTRUCTION OF TALL BUILDINGS
1 Until the nineteenth century, most tall buildings were constructed of load-bearing masonry walls. Masonry walls had to be thick, particularly at the base, to support a building’s great weight. Stoneworkers built these walls by placing stone upon stone or brick upon brick, adding strength and stability by placing layers of mortar or cement between the stones. Floors and roofs had to be supported by wooden beams, but the major vertical
force
of buildings was supported by thick masonry walls. This imposed serious limitations on the number and size of windows.
2 In the 1850s, an alternative was emerging that would eliminate the need for exterior weight-bearing walls: a three-dimensional grid of metal beams and columns. The introduction of metal construction made it possible to build larger interior spaces with fewer columns than before. The new construction was capable of supporting all the loads to which a building might be subjected, including the vertical forces caused by the weight of the floors and the horizontal forces caused by the wind or earthquakes.
3 The first buildings to depart from the load-bearing wall tradition were iron-framed. Wrought iron, shaped by hammering the heated metal or roiling it under extreme pressure, contains almost no carbon, and when used as floor beams, it can support a great deal of weight. An interior wrought iron skeleton supported all of the hnilding’s weight. Exterior walls of reinforced concrete acted mainly as weatherproofing.
As masonry yielded to concrete, walls that once bore weight evolved into thin curtain walls that would allow more windows.
These modifications produced sturdier, lighter, and taller buildings that quickly became known as skyscrapers. Skyscrapers satisfied the growing need for office space, warehouses, and department stores. Buildings of eight or more stories quickly transformed the city skyline and dominated the central business districts of American cities such as New York, Chicago, and St. Louis.
4 Skyscrapers differed from previous tall structures with their use of technical innovations such as cast iron and the elevator. The development of cast iron technology, in which molten iron is poured into a mold, made modern plumbing possible. Cast iron pipes, fittings, and valves could deliver pressurized water to the many floors of tall buildings and drain wastewater out. The invention of the mechanical elevator made it possible to construct even taller buildings. Before the elevator, office buildings were rarely more than four or five stories high. In 1857, the first passenger elevator equipped with safety brakes prevented the elevator from falling to the basement when a cable broke. The elevator made the upper floors as
rentable
as the first floor, liberating architecture from dependence on stairways and human muscle.
5 Not only did these innovations have important uses in the engineering of tall buildings, but
they
also erased the traditional architectural distinctions separating the bottom, middle, and top of a building. Architects designed towers that reached to the heavens in a continuous vertical grid. Iron construction established the principle of repetitive rhythms as a natural expression of construction, as well as the idea that buildings could be made of new materials on a vast scale.
6 Construction techniques were
refined
and extended over the next several decades to produce what architectural historians have called "true skyscrapers," buildings over twenty stories high. The invention of steel was particularly significanti as steel T-beams and I-beams replaced iron in these new structures. Steel weighs less than half as much as masonry and exceeds both masonry and iron in tension and compression strength as well as resistance to fatigue. Steel rivets replaced iron bolts and were in turn replaced by electric arc welding in the 1920s. The skyscraper’s steel skeleton could meet all of the structural requirements while occupying very little interior space. Exterior curtain walls could be quite thin, since their only function now was to let in light and keep the weather out. [br] Why does the author discuss the elevator in paragraph 4?
选项
A、To illustrate an important use of cast iron technology
B、To compare the elevator with the office building
C、To explain why early elevators were dangerous
D、To show how an innovation contributed to architecture
答案
D
解析
The author’s purpose is to show how an innovation contributed to architecture. Clues: The invention of the mechanical elevator made it possible to construct even taller buildings," The elevator made the upper floors as rentable as the first,floor, liberating architecture from dependence on stairways and human muscle. (1.6)
转载请注明原文地址:https://www.tihaiku.com/zcyy/3947152.html
相关试题推荐
CITYARCHIVESAnineteenth-centurydocumentsBmapsCpersonalpapersDphotog
CITYARCHIVESAnineteenth-centurydocumentsBmapsCpersonalpapersDphotog
CITYARCHIVESAnineteenth-centurydocumentsBmapsCpersonalpapersDphotog
(By)theendofthenineteenthcentury,organicchemistryhad(develop)new(met
Notuntilthelatenineteenthandearlytwentiethcenturies______asaunifiedsc
In(theearly)nineteenthcentury,theCherokeenationofAmericanIndians(was
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
Themainpointofthepassageisthattheeighteenthandnineteenthcenturiesw
随机试题
女性,62岁。绝经10年,纳差、下腹胀半年,伴体重减轻。体格检查:腹水征(+),
男性,53岁,寒战、高热、咳嗽,左胸痛两天入院。查体:体温37.5℃,口唇发绀,
下列关于开放式基金申购费用的说法,正确的有()。 ①.申购费可以采用在基
患者平素性急易怒,时有胁胀,近日胁胀加重,伴食欲不振,食后腹胀,便溏,舌苔薄白,
根据《基础地理信息公开表示内容的规定(试行)》,下列基础地理信息可以表示的有(
若扩大工作必须由工作负责人通过(),并在工作票上增填工作项目。若需变更或增设
下列关于资本监管的说法,不符合1988年《巴塞尔报告》规定的是()。A.风险资
图示外伸梁,A截面的剪力为:
依据《中华人民共和国防治海岸工程建设项目污染损害海洋环境管理条例》,下列海岸工程
一个建设工程由多个单位工程组成时,工程文件应按()组卷。A.分部工程 B.分
最新回复
(
0
)