首页
登录
职称英语
(1) Early in the film "A Beautiful Mind", the mathematician John Nash is seen
(1) Early in the film "A Beautiful Mind", the mathematician John Nash is seen
游客
2023-10-26
41
管理
问题
(1) Early in the film "A Beautiful Mind", the mathematician John Nash is seen sitting in a Princeton courtyard, hunched over a playing board covered with small black and white pieces that look like pebbles. He was playing Go(围棋), an ancient Asian game. Frustration at losing that game inspired the real Nash to pursue the mathematics of game theory, research for which he eventually was awarded a Nobel Prize.
(2) In recent years, computer experts, particularly those specializing in artificial intelligence, have felt the same fascination and frustration. Programming other board games has been a relative snap. Even chess has succumbed to the power of the processor. Five years ago, a chess-playing computer called Deep Blue not only beat but thoroughly humbled Garry Kasparov, the world champion at that time. That is because chess, while highly complex, can be reduced to a matter of brute force computation. Go is different. Deceptively easy to learn, either for a computer or a human, it is a game of such depth and complexity that it can take years for a person to become a strong player. Today, no computer has been able to achieve a skill level beyond that of the casual player.
(3) The game is played on a board divided into a grid of 19 horizontal and 19 vertical lines. Black and white pieces called stones are placed one at a time on the grid’s intersections. The object is to acquire and defend territory by surrounding it with stones. Programmers working on Go see it as more accurate than chess in reflecting the ways the human mind works. The challenge of programming a computer to mimic that process goes to the core of artificial intelligence, which involves the study of learning and decision-making, strategic thinking, knowledge representation, pattern recognition and perhaps most intriguingly, intuition.
(4) Along with intuition, pattern recognition is a large part of the game. While computers are good at processing numbers, people are naturally good at matching patterns. Humans can recognize an acquaintance at a glance, even from the back.
(5) Daniel Bump, a mathematics professor at Stanford, works on a program called GNU Go in his spare time.
(6) "You can very quickly look at a chess game and see if there’s some major issue," he said. But to make a decision in Go, he said, players must learn to combine their pattern-matching abilities with the logic and knowledge they have accrued in years of playing.
(7) One measure of the challenge the game poses is the performance of Go computer programs. The past five years have yielded incremental improvements but no breakthroughs, said David Fotland, a programmer and chip designer in San Jose, California, who created and sells The Many Faces of Go, one of the few commercial Go programs.
(8) Part of the challenge has to do with processing speed. The typical chess program can evaluate about 300,000 positions in a second, and Deep Blue was able to evaluate some 200 million positions in a second. By midgame, most Go programs can evaluate only a couple of dozen positions each second, said Anders Kierulf, who wrote a program called SmartGo.
(9) In the course of a chess game, a player has an average of 25 to 35 moves available. In Go, on the other hand, a player can choose from an average of 240 moves. A Go-playing computer would need about 30,000 years to look as far ahead as Deep Blue can with chess in three seconds, said Michael Reiss, a computer scientist in London. But the obstacles go deeper than processing power. Not only do Go programs have trouble evaluating positions quickly: they have trouble evaluating them correctly. Nonetheless, the allure of computer Go increases as the difficulties it poses encourages programmers to advance basic work in artificial intelligence.
(10) Reiss, an expert in neural networks, compared a human being’s ability to recognize a strong or weak position in Go with the ability to distinguish between an image of a chair and one of a bicycle. Both tasks, he said are hugely difficult for a computer.
(11) For that reason, Fotland said, "Writing a strong Go program will teach us more about making computers think like people than writing a strong chess program." [br] The word "snap" in Paragraph 2 means______.
选项
A、a photo
B、a sudden sharp cracking sound
C、a sudden attempt to grasp
D、an easy job
答案
D
解析
词义理解题。从第二段第二句的"Programming other board games has been a relativesnap.”以及最后一句的“Go is different….Today,no tomputer has been able to achieve…”得知,编写其他棋盘游戏的程序相对简单,而围棋则不同。今天没有哪个计算机能够做到。这说明“snap”表示“容易”。
转载请注明原文地址:https://www.tihaiku.com/zcyy/3132664.html
相关试题推荐
Thisisalong_______—roughly20milesdownabeautifulvalleytothelittlevi
(1)TheFieldsMedalisthehighestscientificawardformathematicians.Inf
(1)Therewasawomanwhowasbeautiful,whostartedwithalltheadvantages,
(1)Therewasawomanwhowasbeautiful,whostartedwithalltheadvantages,
“Lookatthosebeautifulladies’gowns”is______,becauseitisnotclearwhether
Thisisalong______—roughly20milesdownabeautifulvalleytothelittlevil
Thehouseitselfisbeautiful,butthe______ratherunpleasant.A、surroundingis
(1)Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseen
(1)Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseen
(1)Earlyinthefilm"ABeautifulMind",themathematicianJohnNashisseen
随机试题
Whateffectscanstresshaveonourworkandlife? Ithinkstressmayhaveboth
[originaltext]M:DidyougototheEnglishCorneryesterday?W:Well.Ihadint
锤击套管成孔灌注桩的中心距在5倍桩管外径以内或小于2m时均应跳打,施打中间空出的
在受拉构件中由于纵筋拉力的存在,构件的抗剪能力将( )。A、难以测定 B、
发热每于劳累后发生或加重,乏力,自汗,气短者,其证型是( )。A.阴虚 B.
对编制财务报表列报的基本要求主要包括()。A、以企业持续经营作为编制基础 B、
对幼儿期的儿童进行定期体格检查,正确的是A.每个月检查一次 B.每2个月检查一
椭圆囊和球囊的适宜刺激是A.头部和躯干直线正负加速度运动 B.正负角加速运动
2000年12月,()成立,标志着中国期货行业自律管理组织的诞生,从而将新的自
A.病位在上,病势下陷类病证 B.病位在里,病势向外的病症 C.病位在下,病
最新回复
(
0
)