首页
登录
学历类
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
免费题库
2022-08-02
57
问题
选项
答案
解析
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。由介值定理可得存在ζ∈[2,3],使得f(ζ)=[f(2)+f(3)]/2,于是f(0)=f(η)=f(ζ),η∈(0,2),ζ∈[2,3]。函数f(x)在[0,η],[η,ζ]均满足罗尔定理,所以存在ξ1∈(0,η),ξ2∈(η,ζ),使得f′(ξ1)=f′(ξ2)=0。函数f′(x)在[ξ1,ξ2]满足罗尔定理,故存在ξ∈(ξ1,ξ2)(0,3),使得f″(ξ)=0。
转载请注明原文地址:https://www.tihaiku.com/xueli/2696971.html
本试题收录于:
数学三研究生题库研究生入学分类
数学三研究生
研究生入学
相关试题推荐
金本位制下黄金输送点中汇率的波动区间为铸币平价(金平价)加或减输送黄金的成本。(
A.有最大值,有最小值 B.有最大值,没有最小值 C.没有最大值
设(x)在区间[0,2]上具有一阶连续导数,且(0)=(2)=0,。 证明:(
设幂级数的收敛区间为(-2,6),则的收敛区间为( )。A.(-2,6) B
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)
(Ⅱ)f(x)在闭区间[2,3]上连续,从而在该区间存在最大值M和最小值m,于是m≤f(2)≤M,m≤f(3)≤Mm≤[f(2)+f(3)]/2≤M。 由
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤
设函数y=f(x)在区间[-1,3]上的图形如图1所示。 说明:说明:11
试求在闭区域及上的最大值与最小值
求函数在约束条件和下的最大值与最小值
随机试题
What’syourattitude______hiscriticism?A、againstB、forC、towardsD、inC考查固定用法。a
WhenMelissaMahanandherhusbandvisitedtheNetherlands,theyfeltimpris
[originaltext]Manychildrenfirstlearnthevalueofmoneybyreceivingap
A.联合卡环 B.对半卡环 C.回力卡环 D.RPI卡环 E.杆型卡环具
面对两个独立的项目,某公司可以接受其中一个或两个或一个都不接受,在使用净现值法(
有医生认为部分患者没什么文化,反正不懂医学,只要告诉他需要做什么检查就行了,没必
行口对口人工呼吸时吹气毕,放开鼻孔的原因是A:防止吹气量过大 B:引流鼻腔分泌
某公司销售部拟派3名销售主管和6名销售人员前往3座城市进行市场调研,每座城市派销
纳税期限由()决定。A.税种的性质 B.应纳税额的大小 C.交通条件 D
总承包一级资质的A企业签订甲工程的施工总承包合同后,经建设单位同意将网架工程分包
最新回复
(
0
)